Статистика

Очистка фенолсодержащих сточных вод

Рис. 4: Зависимость степени очистки СВ от величины анодной плотности тока (iа)

Рис.5: Зависимость концентрации фенола в сточных водах от времени обработки при 1. iа = 0,5 А/дм2; 2. iа = 0,75 А/дм2; iа = 0,75 А/дм2, 3. iа = 1,0 А/дм2

Характер зависимостей показывает, что наивысшая степень очистки достигалась при плотности тока 1А/дм2 и при времени протекания процесса 25 минут. Однако, для обеспечения конечной концентрации фенола в очищенной воде не более 0,5 мг/л возможно проведение процесса в более энергосберегающих условиях: при плотности тока i а - 0,75 А/дм2 за время t - 25 мин. или при плотности тока i а - 1А/дм 2 за время t - 15 минут. В результате введения перед электрохимической обработкой узла дозирования раствора поваренной соли в очищенной от фенола сточной воде повышается солесодержание. С целью более полной очистки СВ от сопутствующих примесей, содержащихся в стоках НХЗ, и для обессоливания воды до нормативных показателей, в схему очистки необходимо ввести узел мембранного обессоливания - обратного осмоса.

1. Модуль предочистки включает емкостное и насосное оборудование: приемная емкость Е1 для исходной сточной воды, насос Н1 подачи стока на электрохимическую обработку в электрофлотодеструктор ЭК (расположен на второй тележке), емкости приготовления раствора поваренной соли, коагулянта и флокулянта Е2- Е4 , дозировочные насосы НД1, НД2, НД3. В трубопровод подачи СВ на входе в электрофлотодеструктор для увеличения электропроводности раствора и улучшения процесса окисления фенола, происходящего при электрофлотодеструкции дозировался раствор поваренной соли, раствор коагулянта определенной концентрации. В емкости Е4 готовился раствор флокулянта, который дозировочным насосом НД3 дозировался в трубопровод на выходе из электрофлотодеструктора (модуль №2).

2. Модуль электрохимической обработки включает электрофлотодеструктор ЭК, выпрямитель постоянного тока ВАК, емкости для приема очищенной воды Е5 и емкость с мешочным фильтром для приема флотошлама ФМ.

Е1 - приемная емкость для исходной сточной воды

Е2 - Е 4 - емкости для приготовления реагентов

Н1,, Н2 - насосы

НД1 - НД4 - насосы пропорционального дозирования

ЭК - электрофлотодеструктор

ВАК - выпрямитель постоянного тока

ФМ - мешочный фильтр

Е5 - емкость для отстаивания

Ф2 - сетчатый фильтр

Е6 - емкость модуля обратноосмотического обессоливания

Е7 - емкость для раствора пиросульфита (или сульфита) натрия

ООМ - обратноосмотический мембранный модуль

Рис.6: Схема опытно-промышленной установки очистки фенолсодержащих сточных вод

Электрофлотодеструктор – это аппарат с расположенным внутри электродным блоком с нерастворимыми анодами. Сверху над поверхностью воды было смонтировано устройство для снятия флотошлама. Через карман флотошлам стекает в мешочный фильтр ФМ. Осветленная вода по мере накопления сливалась в емкость Е5. Для интенсификации хлопьеобразования и быстрейшего осветления очищенной воды в трубопровод подачи из емкости Е4 насосом НД3 дозировался раствор флокулянта. Очищенная вода по качественному составу отвечала требованиям предприятия на слив в ХЗК, но имела повышенное солесодержание. Для организации замкнутого водооборота в состав опытно-промышленной установки был введен модуль обратноосмотического обессоливания №3.

3. Модуль обратноосмотического обессоливания. Осветленная вода после отстаивания в емкости Е5 самотеком подавалась через фильтр сетчатый Ф2 в емкость Е6 узла обратноосмотической очистки. В целях защиты мембраны от воздействия остаточного активного хлора, образующегося на узле электрофлотодеструкции, проводилась операция дехлорирования воды. С этой целью из емкости Е7 дозирующим насосом НД4 в трубопровод подавался 2% раствор пиросульфита (или сульфита) натрия. Из емкости Е6 осветленные и очищенные от фенола сточные воды насосом.Н2 подавались на обратноосмотический мембранный модуль ООМ, укомплектованный высокоселективным обратноосмотическим мембранным элементом. Очищенная вода возвращалась в производство. Концентрат поступал в емкость Е6 и по окончании концентрирования (достижения заданной концентрации солей, контроль по ручному солемеру типа DIST) он подлежал утилизации или выпариванию с получением твердых кристаллов солей. На линии фильтрата и концентрата были установлены расходомеры F2, F3 соответственно. На линии выхода концентрата из мембранного модуля был установлен манометр Р для контроля рабочего давления.

Перейти на страницу: 1 2 3 4 5 6

Другие статьи по экологии

Природные катастрофы в литосфере
Актуальность проблемы. Актуальность экологического изучения литосферы обусловленная тем, что литосфера есть средой всех минеральных ресурсов, одним из основных объектов антропогенной деятел ...

Технологическая схема насосной станции уловленной нефти тит. 262
Откачка уловленного нефтепродукта из резервуара № 7 осуществляется насосами Н-1,2. Для заливки насосов на приемной линии установлены вакуумные бачки Б-1,2. Заливка вакуумных бачков Б-1,2 производитс ...

Радиационная обстановка в Российской Федерации
Благодаря открытию явления радиоактивности были совершены прорывы во многих сферах человеческой деятельности: в области медицины и различных отраслях промышленности, особенно в энергетике. ...